
Formalisation of
Kneser’s Theorem
in Lean and Isabelle/HOL
Mantas Bakšys | Yaël Dillies | Angeliki Koutsoukou-Argyraki

mb2412@cam.ac.uk | yyd23@cam.ac.uk | ak2110@cam.ac.uk

University of Cambridge, UK

4 February 2024

Additive Combinatorics

Additive combinatorics is, at heart, the study of combinatorial
questions involving the additive structure of sets

Additive
Combinatorics

Combinat-
orics

Number
Theory

Ergodic
Theory

Graph
Theory Geometry Group

Theory Probability

Preliminary Definitions

Given an additive abelian group G and finite subsets A and B we
define:

▶ Sumset: A + B = {a + b|a ∈ A, b ∈ B}.
▶ Difference Set: A − B = {a − b|a ∈ A, b ∈ B}.
▶ Stabilizer: S(A) = {g ∈ G |g + A = A}.

Simple and broad concepts lead to many questions
E.g. What are the bounds on the cardinality of sumsets?

How close are sumsets to forming subgroups?
. . .

Kneser’s Theorem

Theorem (Cauchy-Davenport)

Let p be a prime and A,B ⊆ Z/pZ be non-empty subsets, then

|A + B| ≥ min{p, |A|+ |B| − 1}

A natural generalisation of the Cauchy-Davenport theorem for
arbitrary abelian groups is a theorem of Kneser:

Theorem (Kneser)

Let G be an abelian group with finite non-empty subsets A,B ⊆ G
and K = S(A + B), then

|A + B| ≥ |A + K |+ |B + K | − |K |

Cauchy-Davenport from Kneser

Theorem
Kneser’s theorem implies Cauchy-Davenport.

Proof.
Z/pZ has prime order, so K = S(A + B) is either

▶ Z/pZ and A + B = Z/pZ
▶ {0} and Kneser tells us

|A + B| ≥ |A + K |+ |B + K | − |K | = |A|+ |B| − 1

Lean

▶ Lean is an interactive theorem prover based on a version of
Dependent Type Theory called Calculus of Inductive
Constructions

▶ A non-trivial proportion of the modern literature formalised in
Mathlib, the mathematics library

Isabelle/HOL and the Archive of Formal Proofs

▶ Isabelle/HOL is a modern interactive theorem prover based on
Simple Type Theory

▶ Features a strong automation suite with Sledgehammer and
human-readable proofs with Isar

▶ Many substantial theorems formalised in the fast-growing
Isabelle Archive of Formal Proofs (AFP) library

Kneser’s Theorem: A Blueprint

Kneser’s theorem
|A + B| ≥ |A + K| + |B + K| − |K|, where K = S(A + B)

Induct on |A + B| + |A|

Is S(A + B) = {0}?

No!
Apply induction hyp. in

G
/

S(A + B)
Yes!

Define convergent sets C ⊆ A + B
|C| + |S(C)| ≥ |A ∩ B| + |(A ∪ B) + S(C)|

Find the convergent C with |S(C)| minimal

Complete the proof via pointwise-set manipulations

Type Universes

DeVos’ proof of Kneser’s theorem runs induction on the quantity
|A + B|+ |A|

Induction hypothesis is applied to the quotient group G⧸S(A + B)
=⇒ Non-trivial argument to formalise, which requires the induction

argument to quantify over all abelian groups.

=⇒ We ought to find a type β such that for any type α, which can
be made into an abelian group:

α : β
=⇒ Can we do this in each system?

Type Universes

DeVos’ proof of Kneser’s theorem runs induction on the quantity
|A + B|+ |A|

Induction hypothesis is applied to the quotient group G⧸S(A + B)
=⇒ Non-trivial argument to formalise, which requires the induction

argument to quantify over all abelian groups.
=⇒ We ought to find a type β such that for any type α, which can

be made into an abelian group:
α : β

=⇒ Can we do this in each system?

Type Universes

DeVos’ proof of Kneser’s theorem runs induction on the quantity
|A + B|+ |A|

Induction hypothesis is applied to the quotient group G⧸S(A + B)
=⇒ Non-trivial argument to formalise, which requires the induction

argument to quantify over all abelian groups.
=⇒ We ought to find a type β such that for any type α, which can

be made into an abelian group:
α : β

=⇒ Can we do this in each system?

Type Universes - Isabelle

The Type Theory of Isabelle/HOL (STP) does not support Type
Universes.

=⇒ We cannot quantify over types
(there is no type which contains all abelian groups as terms)

=⇒ Is there a workaround? Yes!
In this case, just re-embed the quotient group G⧸S(A + B) into G by

taking coset representatives.

Type Universes - Isabelle

The Type Theory of Isabelle/HOL (STP) does not support Type
Universes.

=⇒ We cannot quantify over types
(there is no type which contains all abelian groups as terms)

=⇒ Is there a workaround? Yes!
In this case, just re-embed the quotient group G⧸S(A + B) into G by

taking coset representatives.

Type Universes - Isabelle

The Type Theory of Isabelle/HOL (STP) does not support Type
Universes.

=⇒ We cannot quantify over types
(there is no type which contains all abelian groups as terms)

=⇒ Is there a workaround?

Yes!
In this case, just re-embed the quotient group G⧸S(A + B) into G by

taking coset representatives.

Type Universes - Isabelle

The Type Theory of Isabelle/HOL (STP) does not support Type
Universes.

=⇒ We cannot quantify over types
(there is no type which contains all abelian groups as terms)

=⇒ Is there a workaround? Yes!
In this case, just re-embed the quotient group G⧸S(A + B) into G by

taking coset representatives.

Workaround for Isabelle/HOL

Preliminary definitions

definition ϕ :: ′a set =⇒ ′a where
ϕ = (x. if x ∈ G // K then

(SOME a. a G x = a ·| K) else undefined)

definition quot-comp-alt :: ′a =⇒ ′a =⇒ ′a where
quot-comp-alt a b = ϕ ((a · b) ·| K)

Excerpt from Kneser’s proof:

let ?ϕ = K.Class
let ?K-repr = K.ϕ ‘ K.Partition
then interpret K-repr: additive-abelian-group ?K-repr

K.quot-comp-alt K.ϕ ?K by <proof>

Type Universes - Lean

Lean’s Type Theory contains ω-many Universe levels

They are denoted by Type 0, Type 1, Type 2, . . .
Each type α in Lean has a universe level u ∈ N such that

α : Type u

Lean also implements universe polymorphism, which means that u
above may be taken as a variable.

Induction argument in Lean code

induction′ n using Nat.strong_induction_on with n ih
generalizing G

Type Universes - Lean

Lean’s Type Theory contains ω-many Universe levels
They are denoted by Type 0, Type 1, Type 2, . . .
Each type α in Lean has a universe level u ∈ N such that

α : Type u

Lean also implements universe polymorphism, which means that u
above may be taken as a variable.

Induction argument in Lean code

induction′ n using Nat.strong_induction_on with n ih
generalizing G

Type Universes - Lean

Lean’s Type Theory contains ω-many Universe levels
They are denoted by Type 0, Type 1, Type 2, . . .
Each type α in Lean has a universe level u ∈ N such that

α : Type u

Lean also implements universe polymorphism, which means that u
above may be taken as a variable.

Induction argument in Lean code

induction′ n using Nat.strong_induction_on with n ih
generalizing G

Type Universes - Lean

Lean’s Type Theory contains ω-many Universe levels
They are denoted by Type 0, Type 1, Type 2, . . .
Each type α in Lean has a universe level u ∈ N such that

α : Type u

Lean also implements universe polymorphism, which means that u
above may be taken as a variable.

Induction argument in Lean code

induction′ n using Nat.strong_induction_on with n ih
generalizing G

Stabilizers - different definitions

On pen-and-paper:

S(A) = {g ∈ G|g + A = A}

In Isabelle:

definition stabilizer:: ′a set =⇒ ′a set where
stabilizer S ≡ {x ∈ G. sumset {x} (S ∩ G) = S ∩ G}

In Lean:

def mulStab (s : Finset G) : Finset G :=
(s / s).filter fun a => a · s = s

Stabilizers - different definitions

▶ Finset in Lean vs Set in Isabelle
▶ Use of filter and s/s in Lean. Why?
▶ What is the stabilizer of ∅?

Depends on the system!
▶ What could we have done differently?

Stabilizers - different definitions

▶ Finset in Lean vs Set in Isabelle
▶ Use of filter and s/s in Lean. Why?
▶ What is the stabilizer of ∅? Depends on the system!
▶ What could we have done differently?

Handling algebraic set expressions - Motivation

Additive combinatorics uses identities of the form:
▶ A + B = B + A
▶ −(−A) = A
▶ −(A − B) = B − A
▶ A − (B − C) = A + C − B
▶ (A − B) + (C − D) = (A + C)− (B + D)

▶ 2(A − 3B) + 3(B − 2C) = 2(A − 3C) + 3(2B − B),
where A,B,C ,D are sets in an abelian group.

Handling algebraic set expressions - Problem

Easily derivable from AddGroup lemmas. But Finset G is not a
group even if G is.

AddGroup G ≠⇒ AddGroup (Finset G)

Isabelle solution: Extensionality every time + automation bash
Lean solution: Generalise relevant lemmas to something weaker
than AddGroup that Finset G respects

Handling algebraic set expressions - Problem

Easily derivable from AddGroup lemmas. But Finset G is not a
group even if G is.

AddGroup G ≠⇒ AddGroup (Finset G)

Isabelle solution: Extensionality every time + automation bash
Lean solution: Generalise relevant lemmas to something weaker
than AddGroup that Finset G respects

Handling algebraic set expressions - Idea

The AddGroup identities that hold for Finset G are exactly the ones
where each variable (sign included) appears the same number
of times on both sides.

A ̸= −A
A − A ̸= 0

A(B + C) ̸= AB + AC

Homework: Check this is the case for the identities two slides ago.

Handling algebraic set expressions - Idea

Addition identities are already covered by Monoid. So look at the
most basic identities involving negation and subtraction:

A − B = A + (−B)

−(−A) = A
−(A + B) = (−B) + (−A)

This is enough to get all lemmas we care about on Finset G!

Handling algebraic set expressions - Definition

class SubtractionMonoid (G : Type u)
extends AddMonoid G, Neg G, Sub G where

sub_eq_add_neg (a b : G) : a - b = a + -b
neg_neg (a : G) : -(-a) = a
neg_add_rev (a b : G) : -(a + b) = -b + -a

SubtractionMonoid G =⇒ SubtractionMonoid (Finset G)

Handling algebraic set expressions - Bonus

Mathlib used to prove lemmas like(a
b

)−1
=

b
a

a
b
c
=

ac
b

a
b

c
d
=

ac
bd

separately for Group and GroupWithZero. DivisionMonoid unifies
both versions!

This extra axiom lets us unify even more lemmas:

AB = 1 =⇒ A−1 = B

Handling algebraic set expressions - Bonus

Mathlib used to prove lemmas like(a
b

)−1
=

b
a

a
b
c
=

ac
b

a
b

c
d
=

ac
bd

separately for Group and GroupWithZero. DivisionMonoid unifies
both versions!
This extra axiom lets us unify even more lemmas:

AB = 1 =⇒ A−1 = B

Concluding remarks

Kneser’s theorem Paper Lean Isabelle
.zip size (bytes) 2 829 7 236 10 611
De Bruijn factor 1 2.56 3.75

Additive Combinatorics is an area suitable in any modern proof
assistant!

Acknowledgements and Contacts

Mantas1

mb2412@cam.ac.uk
Yaël2

yyd23@cam.ac.uk
Angeliki3

ak2110@cam.ac.uk

Source code:
▶ Isabelle AFP Entry:

https://www.isa-afp.org/entries/Kneser_Cauchy_Davenport.html
▶ Lean formalisation: https://yaeldillies.github.io/LeanCamCombi/docs/

LeanCamCombi/Kneser/Kneser.html

Funding: This work was funded by the ERC Advanced Grant ALEXANDRIA
(Project GA 742178)1,3, the Cambridge Mathematics Placements (CMP) Internship
Programme1

https://www.isa-afp.org/entries/Kneser_Cauchy_Davenport.html
https://yaeldillies.github.io/LeanCamCombi/docs/LeanCamCombi/Kneser/Kneser.html
https://yaeldillies.github.io/LeanCamCombi/docs/LeanCamCombi/Kneser/Kneser.html

