Formalisation of Kneser＇s Theorem in Lean and Isabelle／HOL

Mantas Bakšys｜Yaël Dillies｜Angeliki Koutsoukou－Argyraki
mb2412＠cam．ac．uk｜yyd23＠cam．ac．uk｜ak2110＠cam．ac．uk

University of Cambridge，UK

Additive Combinatorics

Additive combinatorics is, at heart, the study of combinatorial questions involving the additive structure of sets

\(\begin{array}{cccccc}Combinat- \& \begin{array}{c}Number
orics\end{array} \& Theory \& Thedic \& Graph \& Theory\end{array} $$
\begin{gathered}\text { Theory }\end{gathered}
$$\) Geometry \(\begin{gathered}Group
Theory\end{gathered}\) Probability

Preliminary Definitions

Given an additive abelian group G and finite subsets A and B we define:

- Sumset: $A+B=\{a+b \mid a \in A, b \in B\}$.
- Difference Set: $A-B=\{a-b \mid a \in A, b \in B\}$.
- Stabilizer: $\mathcal{S}(A)=\{g \in G \mid g+A=A\}$.

Simple and broad concepts lead to many questions
E.g. What are the bounds on the cardinality of sumsets? How close are sumsets to forming subgroups?

Kneser's Theorem

Theorem (Cauchy-Davenport)

Let p be a prime and $A, B \subseteq \mathbb{Z} / p \mathbb{Z}$ be non-empty subsets, then

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

A natural generalisation of the Cauchy-Davenport theorem for arbitrary abelian groups is a theorem of Kneser:

Theorem (Kneser)

Let G be an abelian group with finite non-empty subsets $A, B \subseteq G$ and $K=\mathcal{S}(A+B)$, then

$$
|A+B| \geq|A+K|+|B+K|-|K|
$$

Cauchy-Davenport from Kneser

Theorem

Kneser's theorem implies Cauchy-Davenport.

Proof.

$\mathbb{Z} / p \mathbb{Z}$ has prime order, so $K=\mathcal{S}(A+B)$ is either

- $\mathbb{Z} / p \mathbb{Z}$ and $A+B=\mathbb{Z} / p \mathbb{Z}$
- $\{0\}$ and Kneser tells us

$$
|A+B| \geq|A+K|+|B+K|-|K|=|A|+|B|-1
$$

Lean

- Lean is an interactive theorem prover based on a version of Dependent Type Theory called Calculus of Inductive Constructions
- A non-trivial proportion of the modern literature formalised in Mathlib, the mathematics library

Isabelle/HOL and the Archive of Formal Proofs

- Isabelle/HOL is a modern interactive theorem prover based on Simple Type Theory
- Features a strong automation suite with Sledgehammer and human-readable proofs with Isar
- Many substantial theorems formalised in the fast-growing Isabelle Archive of Formal Proofs (AFP) library

Kneser's Theorem: A Blueprint

No!
Apply induction hyp. in $G / \mathcal{S}(A+B)$

Kneser's theorem

$$
|A+B| \geq|A+K|+|B+K|-|K|, \text { where } K=\mathcal{S}(A+B)
$$

Type Universes

DeVos' proof of Kneser's theorem runs induction on the quantity

$$
|A+B|+|A|
$$

Induction hypothesis is applied to the quotient group $G / \mathcal{S}(A+B)$
\Longrightarrow Non-trivial argument to formalise, which requires the induction argument to quantify over all abelian groups.

Type Universes

DeVos' proof of Kneser's theorem runs induction on the quantity

$$
|A+B|+|A|
$$

Induction hypothesis is applied to the quotient group $G / \mathcal{S}(A+B)$
\Longrightarrow Non-trivial argument to formalise, which requires the induction argument to quantify over all abelian groups.
\Longrightarrow We ought to find a type β such that for any type α, which can be made into an abelian group:

$$
\alpha: \beta
$$

Type Universes

DeVos' proof of Kneser's theorem runs induction on the quantity

$$
|A+B|+|A|
$$

Induction hypothesis is applied to the quotient group $G / \mathcal{S}(A+B)$
\Longrightarrow Non-trivial argument to formalise, which requires the induction argument to quantify over all abelian groups.
\Longrightarrow We ought to find a type β such that for any type α, which can be made into an abelian group:

$$
\alpha: \beta
$$

\Longrightarrow Can we do this in each system?

Type Universes - Isabelle

The Type Theory of Isabelle/HOL (STP) does not support Type Universes.

Type Universes - Isabelle

The Type Theory of Isabelle/HOL (STP) does not support Type Universes.
\Longrightarrow We cannot quantify over types
(there is no type which contains all abelian groups as terms)

Type Universes - Isabelle

The Type Theory of Isabelle/HOL (STP) does not support Type Universes.
\Longrightarrow We cannot quantify over types
(there is no type which contains all abelian groups as terms) \Longrightarrow Is there a workaround?

Type Universes - Isabelle

The Type Theory of Isabelle/HOL (STP) does not support Type Universes.
\Longrightarrow We cannot quantify over types
(there is no type which contains all abelian groups as terms) \Longrightarrow Is there a workaround? Yes!
In this case, just re-embed the quotient group $G / \mathcal{S}(A+B)$ into G by taking coset representatives.

Workaround for Isabelle/HOL

Preliminary definitions

definition $\phi::$ 'a set \Longrightarrow 'a where

$$
\begin{aligned}
\phi= & (x . \text { if } x \in G / / K \text { then } \\
& (S O M E \text { a. } a \mathrm{G} x=\mathrm{a} \cdot \mid \mathrm{K}) \text { else undefined) }
\end{aligned}
$$

definition quot-comp-alt : : 'a \Longrightarrow 'a \Longrightarrow 'a where quot-comp-alt a b $=\phi((\mathrm{a} \cdot \mathrm{b}) \cdot \mid \mathrm{K})$

Excerpt from Kneser's proof:

let $? \phi=\mathrm{K} . \mathrm{Class}$
let ?K-repr = K. ϕ ' K.Partition
then interpret K-repr: additive-abelian-group ?K-repr K.quot-comp-alt K. ϕ ?K by <proof>

Type Universes - Lean

Lean's Type Theory contains ω-many Universe levels

Type Universes - Lean

Lean's Type Theory contains ω-many Universe levels They are denoted by Type 0 , Type 1, Type 2, ... Each type α in Lean has a universe level $u \in \mathbb{N}$ such that

$$
\alpha \text { : Type } u
$$

Type Universes - Lean

Lean's Type Theory contains ω-many Universe levels They are denoted by Type 0 , Type 1, Type 2, ... Each type α in Lean has a universe level $u \in \mathbb{N}$ such that

$$
\alpha \text { : Type } u
$$

Lean also implements universe polymorphism, which means that u above may be taken as a variable.

Type Universes - Lean

> Lean's Type Theory contains ω-many Universe levels They are denoted by Type 0 , Type 1, Type 2, ...
> Each type α in Lean has a universe level $u \in \mathbb{N}$ such that

$$
\alpha \text { : Type } u
$$

Lean also implements universe polymorphism, which means that u above may be taken as a variable.

Induction argument in Lean code

induction' n using Nat.strong_induction_on with n ih generalizing G

Stabilizers - different definitions

On pen-and-paper:

$$
\mathcal{S}(A)=\{g \in G \mid g+A=A\}
$$

In Isabelle:

definition stabilizer: : 'a set \Longrightarrow 'a set where stabilizer $S \equiv\{x \in G$. sumset $\{x\}(S \cap G)=S \cap G\}$

In Lean:

def mulStab (s : Finset G) : Finset G := (s / s).filter fun a => a $\cdot \mathrm{s}=\mathrm{s}$

Stabilizers - different definitions

- Finset in Lean vs Set in Isabelle
- Use of filter and s / s in Lean. Why?
- What is the stabilizer of \emptyset ?

Stabilizers - different definitions

- Finset in Lean vs Set in Isabelle
- Use of filter and s / s in Lean. Why?
- What is the stabilizer of \emptyset ? Depends on the system!
- What could we have done differently?

Handling algebraic set expressions - Motivation

Additive combinatorics uses identities of the form:

- $A+B=B+A$
- $-(-A)=A$
- $-(A-B)=B-A$
- $A-(B-C)=A+C-B$
- $(A-B)+(C-D)=(A+C)-(B+D)$
- $2(A-3 B)+3(B-2 C)=2(A-3 C)+3(2 B-B)$,
where A, B, C, D are sets in an abelian group.

Handling algebraic set expressions - Problem

Easily derivable from AddGroup lemmas. But Finset G is not a group even if G is.

AddGroup $G \nRightarrow$ AddGroup (Finset G)

Handling algebraic set expressions - Problem

Easily derivable from AddGroup lemmas. But Finset G is not a group even if G is.

$$
\text { AddGroup } G \nRightarrow \text { AddGroup (Finset } G \text {) }
$$

Isabelle solution: Extensionality every time + automation bash Lean solution: Generalise relevant lemmas to something weaker than AddGroup that Finset G respects

Handling algebraic set expressions - Idea

The AddGroup identities that hold for Finset G are exactly the ones where each variable (sign included) appears the same number of times on both sides.

$$
\begin{aligned}
A & \neq-A \\
A-A & \neq 0 \\
A(B+C) & \neq A B+A C
\end{aligned}
$$

Homework: Check this is the case for the identities two slides ago.

Handling algebraic set expressions - Idea

Addition identities are already covered by Monoid. So look at the most basic identities involving negation and subtraction:

$$
\begin{aligned}
A-B & =A+(-B) \\
-(-A) & =A \\
-(A+B) & =(-B)+(-A)
\end{aligned}
$$

This is enough to get all lemmas we care about on Finset G !

Handling algebraic set expressions - Definition

class SubtractionMonoid (G : Type u) extends AddMonoid G, Neg G, Sub G where sub_eq_add_neg (a b : G) : a - b = a + -b neg_neg (a : G) : $-(-\mathrm{a})=\mathrm{a}$ neg_add_rev (a b : G) : $-(\mathrm{a}+\mathrm{b})=-\mathrm{b}+-\mathrm{a}$

SubtractionMonoid $G \Longrightarrow$ SubtractionMonoid (Finset G)

Handling algebraic set expressions - Bonus

Mathlib used to prove lemmas like

$$
\begin{aligned}
\left(\frac{a}{b}\right)^{-1} & =\frac{b}{a} \\
\frac{a}{\frac{b}{c}} & =\frac{a c}{b} \\
\frac{a}{b} \frac{c}{d} & =\frac{a c}{b d}
\end{aligned}
$$

separately for Group and GroupWithZero. DivisionMonoid unifies both versions!

Handling algebraic set expressions - Bonus

Mathlib used to prove lemmas like

$$
\begin{aligned}
\left(\frac{a}{b}\right)^{-1} & =\frac{b}{a} \\
\frac{a}{\frac{b}{c}} & =\frac{a c}{b} \\
\frac{a}{b} \frac{c}{d} & =\frac{a c}{b d}
\end{aligned}
$$

separately for Group and GroupWithZero. DivisionMonoid unifies both versions!
This extra axiom lets us unify even more lemmas:

$$
A B=1 \Longrightarrow A^{-1}=B
$$

Concluding remarks

Kneser's theorem	Paper	Lean	Isabelle
.zip size (bytes)	2829	7236	10611
De Bruijn factor	1	2.56	3.75

Additive Combinatorics is an area suitable in any modern proof assistant!

Acknowledgements and Contacts

Mantas ${ }^{1}$
mb2412@cam.ac.uk

Yäl ${ }^{2}$
yyd23@cam.ac.uk

Angeliki ${ }^{3}$
ak2110@cam.ac.uk

Source code:

- Isabelle AFP Entry:
https://www.isa-afp.org/entries/Kneser_Cauchy_Davenport.html
- Lean formalisation: https://yaeldillies.github.io/LeanCamCombi/docs/ LeanCamCombi/Kneser/Kneser.html
Funding: This work was funded by the ERC Advanced Grant ALEXANDRIA (Project GA 742178) ${ }^{1,3}$, the Cambridge Mathematics Placements (CMP) Internship Programme ${ }^{1}$

